

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Harmonic Frequencies and Potential Energy Distributions of Partially Deuterated Methyl Cyanide

John C. Whitmer^a; Roger A. Patterson^a

^a Department of Chemistry, Western Washington State College, Bellingham, Washington

To cite this Article Whitmer, John C. and Patterson, Roger A.(1975) 'Harmonic Frequencies and Potential Energy Distributions of Partially Deuterated Methyl Cyanide', *Spectroscopy Letters*, 8: 12, 943 — 952

To link to this Article: DOI: 10.1080/00387017508067397

URL: <http://dx.doi.org/10.1080/00387017508067397>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

HARMONIC FREQUENCIES AND POTENTIAL ENERGY DISTRIBUTIONS
OF PARTIALLY DEUTERATED METHYL CYANIDE

John C. Whitmer and Roger A. Patterson

Department of Chemistry
Western Washington State College
Bellingham, Washington 98225

INTRODUCTION

Although the vibrational spectra and force constants of CH_3CN and CD_3CN have been thoroughly studied, partially deuterated methyl cyanide has received much less attention. The infrared spectrum of CD_2HCN has only recently been reported¹ and that of CH_2DCN has not yet appeared. Normal coordinate analysis for neither partially deuterated species has appeared. We report here harmonic frequencies and potential energy distributions for both partially deuterated methyl cyanide species, CH_2DCN and CD_2HCN , based on force fields and structural parameters from CH_3CN and CD_3CN . The calculated frequencies for CD_2HCN are compared with the observed infrared frequencies. The vibrational interaction of the relatively high CN stretching frequency and the CD stretching frequencies is also discussed.

Force constants of methyl cyanide have been reported by a number of investigators. Pillai and Cleveland² determined a valence force

field based on observed frequencies of CH_3CN . Nakagawa and Shimanouchi³ reported a Urey-Bradley force field for methyl cyanide based on vibrational frequency and Coriolis zeta data. Duncan⁴ calculated a constrained Hybrid-Orbital Force Field and normal coordinates for CH_3CN and CD_3CN based on more complete isotopic frequency, Coriolis zeta and centrifugal stretching data. More recently, Yamadera and Krimm⁵ in a study of a number of nitriles, obtained a valence force field for methyl cyanide which gave quite good agreement with the observed frequencies of CH_3CN and CD_3CN although no normal coordinates or potential energy distributions based on this force field were reported.

CALCULATIONS

CH_3CN and CD_3CN have C_{3v} symmetry (4 A_1 and 4 E vibrational modes). Upon partial deuteration the symmetry is reduced to C_s (8 a' and 4 a'' modes). The inverse kinetic energy (G) matrices were calculated from standard formulae^{6,7} in terms of thirteen bond and bond angle internal coordinates in Figure 1. Molecular parameters used are as follows:

$$\begin{array}{ll}
 r_{\text{CH}} = 1.110 \text{ \AA} & M_{\text{H}} = 1.008 \text{ amu} \\
 r_{\text{CC}} = 1.458 \text{ \AA} & M_{\text{D}} = 2.014 \text{ amu} \\
 r_{\text{CN}} = 1.157 \text{ \AA} & M_{\text{C}} = 12.00 \text{ amu} \\
 \alpha = \beta = 109.47^\circ & M_{\text{N}} = 14.00 \text{ amu}
 \end{array}$$

Symmetry coordinates for CH_3CN and CD_3CN (C_{3v}) are listed below:⁸

A_1 species

$$\begin{aligned}
 S_1 &= 3^{-1/2}(\Delta r_1 + \Delta r_2 + \Delta r_3) \\
 S_2 &= 6^{-1/2}(\Delta\alpha_1 + \Delta\alpha_2 + \Delta\alpha_3 - \Delta\beta_1 - \Delta\beta_2 - \Delta\beta_3) \\
 S_3 &= \Delta r_4 & S_4 &= \Delta r_5 \\
 S_{\text{redundant}} &= 6^{-1/2}(\Delta\alpha_1 + \Delta\alpha_2 + \Delta\alpha_3 + \Delta\beta_1 + \Delta\beta_2 + \Delta\beta_3)
 \end{aligned}$$

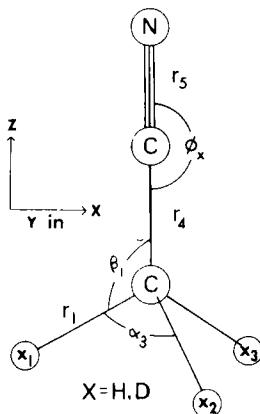


FIGURE 1 - Internal Coordinates of Methyl Cyanide. ϕ_x is in the $NCCX_1$ Plane. ϕ_y is in a Plane Perpendicular to the $NCCX_1$ Plane.

E species

$$\begin{array}{ll}
 S_5 = 6^{-1/2}(2\Delta r_1 - \Delta r_2 - \Delta r_3) & S'_5 = 2^{-1/2}(\Delta r_2 - \Delta r_3) \\
 S_6 = 6^{-1/2}(2\Delta \alpha_1 - \Delta \alpha_2 - \Delta \alpha_3) & S'_6 = 2^{-1/2}(\Delta \alpha_2 - \Delta \alpha_3) \\
 S_7 = 6^{-1/2}(2\Delta \beta_1 - \Delta \beta_2 - \Delta \beta_3) & S'_7 = 2^{-1/2}(\Delta \beta_2 - \Delta \beta_3) \\
 S_8 = \Delta \phi_x & S'_8 = \Delta \phi_y
 \end{array}$$

For partially deuterated methyl cyanide (C_s), the reduced symmetry leads to a reclassification of the above coordinates. The correlation from C_{3v} to C_s symmetry is

For C_s symmetry S_1 through S_8 are a' and S'_5 through S'_8 are a'' . The r_1 , α_1 , and β_1 coordinates are associated with the isotopically unique hydrogen atom. To better approximate the expected normal coordinates of partially deuterated methyl cyanide, S_1 and S_5 (both a') were changed as follows: $S_1 = \Delta r_1$, $S_5 = 2^{-1/2}(\Delta r_2 + \Delta r_3)$.

S_1 represents the change in the isotopically unique CH(D) bond, r_1 ; S_5 represents the corresponding symmetric change in the remaining symmetrically equivalent pair, r_2 and r_3 . The other coordinates for the partially deuterated species are as given for CH_3CN and CD_3CN (C_{3v}).

The force field of Yamadera and Krimm⁵ used in this work was reported in terms of the thirteen bond and bond angle internal (not symmetry) coordinates of Figure 1. This force field was transformed into the symmetry force field ($F_{\text{sym}} = \tilde{U}\tilde{F}\tilde{U}$) using the C_s set of symmetry coordinates. The G matrices were transformed in an analogous way. The vibrational secular equation was formed from the G and F matrices for all isotopic species and solved for harmonic frequencies and potential energy distributions. The results are in Table 1. The normal coordinates (L and L^{-1} matrices normalized to $LL^{-1} = G$) were also obtained and although not reported here are available from the authors on request. The harmonic frequencies of CH_3CN and CD_3CN were also calculated using this same force field. The results were in each case within one wavenumber of those calculated by Yamadera and Krimm.⁵

DISCUSSION

Although no observed frequencies have as yet been reported for CH_2DCN , Duncan, McKean and Michie¹ have reported observed infrared frequencies of CD_2HCN . These observed frequencies are included in Table 1 with those calculated in this work. For the symmetric (a') frequencies the average deviation between observed and calculated values is less than 0.5%; quite satisfactory considering that these observed frequencies were not part of the data originally used to fit the force field. The largest deviation is for the predominantly CD_2

TABLE I

Calculated Harmonic Frequencies and Potential Energy Distributions for
 CD_2HCN and CH_2DCN .

^a species	$\nu(\text{obs.})^a$	$\nu(\text{calc.})$	P.E.D.
CD_2HCN	2985	2992	s_1 (99)
	2273	2274	s_3 (12), s_4 (84), s_5 (4)
	2184	2160	s_2 (1), s_4 (5), s_5 (94)
	1282	1283	s_2 (58), s_3 (2), s_6 (17), s_7 (22)
	1076	1068	s_2 (23), s_3 (14), s_4 (2), s_6 (53), s_7 (8)
	936	941	s_3 (27), s_4 (4), s_6 (28), s_7 (39), s_8 (2)
	837	831	s_2 (19), s_3 (44), s_4 (6), s_6 (1), s_7 (27), s_8 (2)
	345	346	s_7 (3), s_8 (96)
	—	2974	s_5 (99)
CH_2DCN	—	2273	s_1 (6), s_3 (12), s_4 (83)
	—	2202	s_1 (92), s_4 (6), s_7 (1)
	—	1433	s_2 (21), s_6 (74), s_7 (5)
	—	1283	s_1 (1), s_2 (69), s_3 (2), s_6 (24), s_7 (4)
	—	944	s_3 (59), s_4 (8), s_7 (32)
	—	833	s_2 (11), s_3 (27), s_4 (4), s_7 (55), s_8 (3)
	—	344	s_7 (4), s_8 (96)
	—	—	—
	—	—	—
^a species			
CD_2HCN	2263	2246	s_5^1 (98), s_6^1 (1), s_7^1 (1)
	~1282	1277	s_5^1 (1), s_6^1 (98), s_7^1 (1)
	~900 ^b	831	s_5^1 (1), s_6^1 (1), s_7^1 (93), s_8^1 (5)
	~345	338	s_7^1 (5), s_8^1 (94)
CH_2DCN	—	3009	s_5^1 (100)
	—	1279	s_6^1 (73), s_7^1 (27)
	—	1006	s_6^1 (27), s_7^1 (70), s_8^1 (3)
	—	354	s_6^1 (1), s_7^1 (2), s_8^1 (97)

^a Reference 1

^b Not observed; estimated from Q branch perturbations in 936 (a') mode.

stretching mode; the observed mode 24 cm^{-1} higher than that calculated in this work. As has been discussed in detail by McKean⁹ $\text{CH}(\text{D})$ stretching modes are often complicated by Fermi resonance with the first overtone of methyl deformation modes, and this may be responsible for the deviation in this case.

The observed antisymmetric (a'') frequencies were not as precisely determined as the symmetric (a') frequencies. Three of the (a'') frequencies were reported as approximate; one of these estimated from Q branch perturbations present in the 936 cm^{-1} (a') mode. This uncertainty in the observed (a'') frequencies may be responsible for the deviations between observed and calculated values.

As has been previously noted¹⁰ the predominantly CN stretching frequency in CH_3CN is slightly increased upon complete deuteration, contrary to what might be expected upon substitution of more massive deuterium atoms. This is due to vibrational mixing and normal coordinate changes between the predominantly CN and CD stretching modes. This small frequency increase was also noted in this work upon partial deuteration; most of the increase occurring at the initial deuterium substitution. For the series CH_3CN , CH_2DCN , CD_2HCN and CD_3CN the predominantly CN stretching frequency is calculated at 2269, 2273, 2274 and 2274 cm^{-1} respectively. To discern the vibrational mode changes occurring upon stepwise deuteration, calculations were also made on the hypothetical molecules, CH_2XCN , CHDXCN and CD_2XCN for $M_x = 1.0$ to 2.0 amu at intervals of 0.2 amu. The calculated frequencies of the four highest modes (v_1, v_2, v_3, v_4), irrespective of symmetry, are in Table 2. These four modes are the predominantly $\text{CH}(\text{D})$ and CN stretching frequencies. In Figure 2 these four frequencies are plotted vs M_x . In Figure 3 the

TABLE 2

Calculated Harmonic Frequencies ν_1 , ν_2 , ν_3 , ν_4 (Four Highest Irrespective of Symmetry) for CH_2XCN , CHDXCN and CD_2XCN .

	M_x (amu)	ν_1	ν_2	ν_3	ν_4
CH_2XCN	1.2	3009(a'')	2976(a')	2759(a')	2268(a')
	1.4	3009	2974	2578	2268
	1.6	3009	2974	2433	2267
	1.8	3009	2974	2318	2263
CHDXCN^a	1.2	2993(A)	2763(A)	2273(A)	2201(A)
	1.4	2992	2583	2273	2199
	1.6	2992	2439	2273	2195
	1.8	2992	2327	2272	2188
CD_2XCN	1.2	2766(a')	2274(a')	2246(a'')	2159(a')
	1.4	2584	2274	2245	2156
	1.6	2442	2274	2245	2152
	1.8	2331	2273	2245	2143

^a CHDXCN ($M_x \neq \text{H,D}$) belongs to the C_1 point group (no symmetry). Thus all modes are of the same symmetry (A).

contribution of the CN symmetry coordinate (S_4) to the potential energy distribution is plotted vs M_x . Since significant P.E.D. shifts occur in the neighborhood of $M_x = 1.0(\text{H})$ and $2.0(\text{D})$, calculations were made at 0.04 amu intervals from $M_x = 1.0$ to 1.2 and 1.8 to 2.0 amu and these were incorporated in Figures 2 and 3 although not tabulated in Table 2. As can be seen in Figure 3 the predominantly CN stretching frequency undergoes a systematic shift from ν_4 to ν_1 upon the gradual deuteration represented by the abscissa, M_x . In Figure 2 for CH_2XCN , as an example, as M_x increases in the neighborhood of $M_x = 1.9$ amu, ν_4 is losing CN stretching and gaining CX stretching character; ν_3 is shifting character

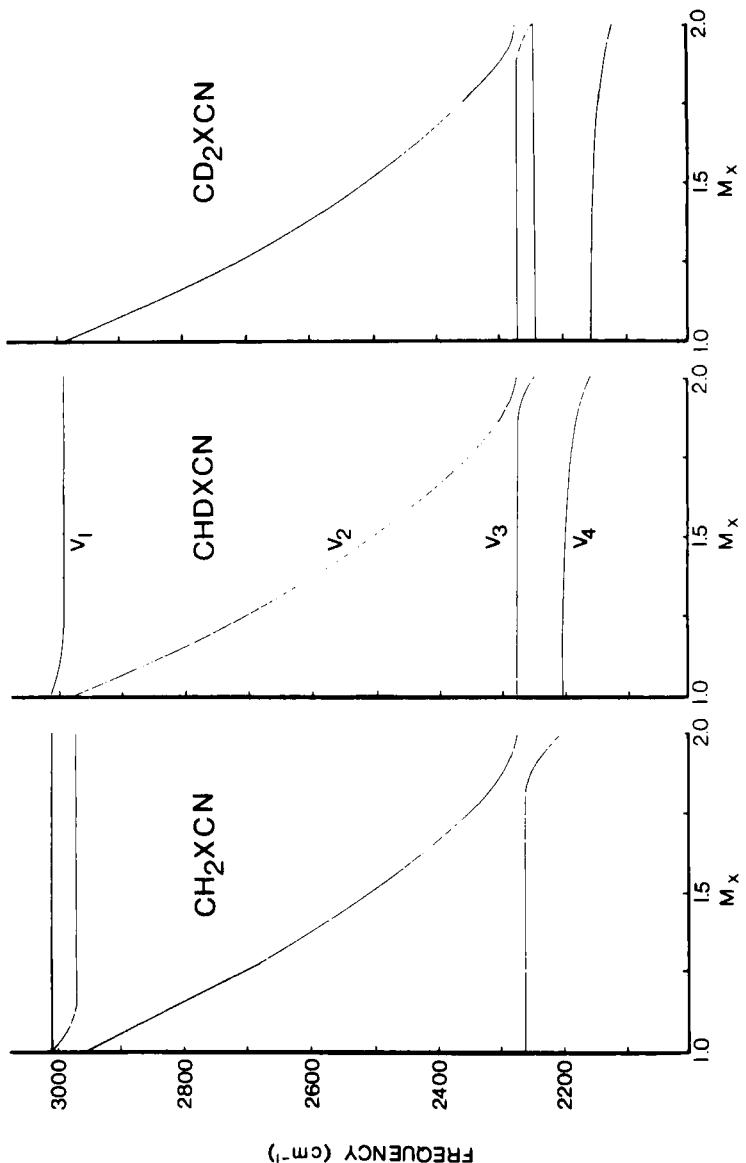


FIGURE 2
The Four Highest Frequencies, Irrespective of Symmetry, of CH_2XCN , CHDXCN and CD_2XCN vs the Mass of X (M_x) in amu.

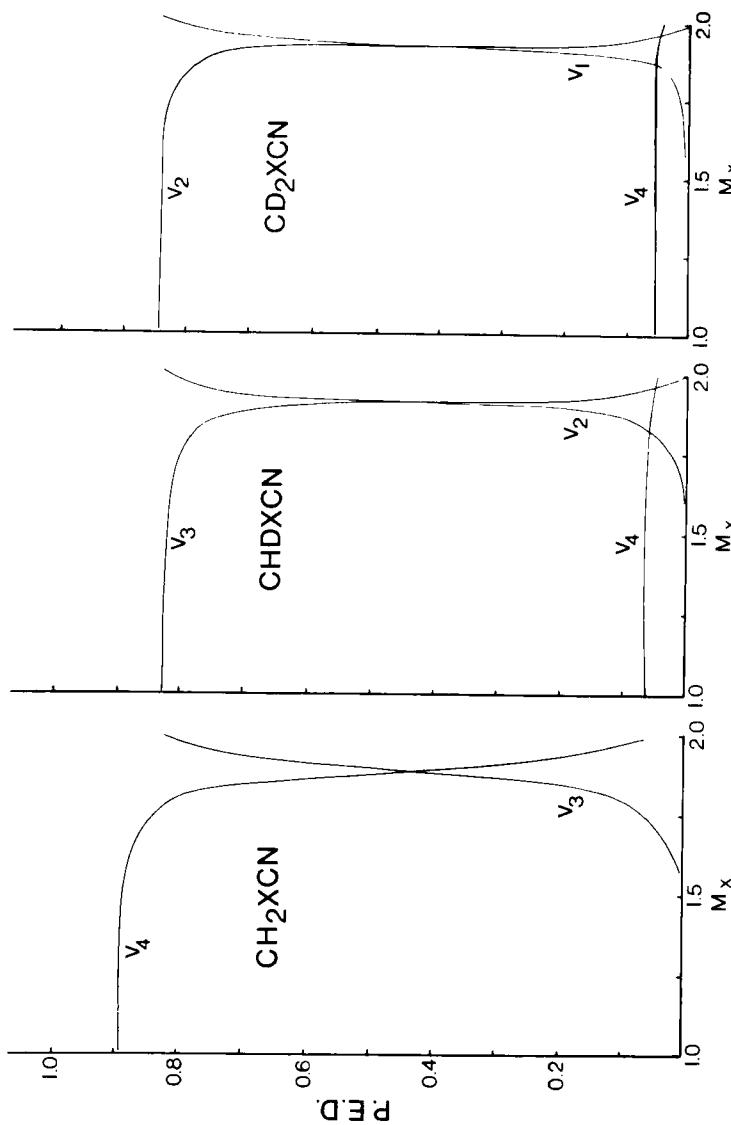


FIGURE 3

The Contribution of the CN Symmetry Coordinate (S_4) to the Potential Energy Distribution (P.E.D.) for the Four Highest Frequencies of CH_2XCN , CHDXCN and CD_2XCN vs the Mass of X (M_x) in amu.

in a reverse fashion. An analogous shift occurs around $M_x = 1.9$ amu for CHDXCN and CD_2XCN .

REFERENCES

1. J.L. Duncan, D.C. McKean, and N.D. Michie, *J. Mol. Structure*, 21, 405 (1974).
2. M.G.K. Pillai and F.F. Cleveland, *J. Mol. Spectrosc.*, 5, 212 (1960).
3. I. Nakagawa and T. Shimanouchi, *Spectrochim. Acta*, 18, 513 (1962).
4. J.L. Duncan, *Spectrochim. Acta*, 20, 1197 (1964).
5. R. Yamadera and S. Krimm, *Spectrochim. Acta*, 24A, 1677 (1968).
6. E.B. Wilson, J.C. Decius, and P.C. Cross, *Molecular Vibrations*, Appendix VI, McGraw-Hill, New York (1955).
7. J.C. Whitmer, *J. Mol. Structure*, 27, 443 (1975).
8. This set of symmetry coordinates is orthogonal only if the methyl angles are tetrahedral, i.e. $\alpha = \beta$.
9. D.C. McKean, *Spectrochim. Acta* 29A, 1559 (1973); 30A, 1169 (1974).
10. W.H. Fletcher, C.S. Shoup, Jr., and W.T. Thompson, *Spectrochim. Acta*, 20, 1065 (1964).

Received: 9-25-75

Accepted: 10-6-75